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Introduction: Previous studies performed at the Edmonton PET Centre (EPC) have demonstrated 
that the use of Nb-sputtered Havar foils during [18F]F- production via proton irradiation of [18O]H2O 
decreases the radionuclidic and chemical impurities within the irradiated water1. Given the 
improved [18F]F- reactivity, increased [18F]FDG yield consistency, and decreased need for target 
rebuilding noted for Nb-sputtered Havar, these sputtered foils were adopted as the standard 
practice for [18F]F- production at our facility in mid-2006. Following prolonged use of the Nb-
sputtered foils however, degradation of the niobium film has been noted, with Havar impurities, 
FDG yield consistency and [18F]F- reactivity returning over time to levels comparable with that of 
non-sputtered Havar.  

Aim: The goal of this current work was to find a film that demonstrates increased longevity with 
regards to [18F]F- reactivity when compared with niobium.  

Methods: All film sputtering (Nb, Pt, Ta, Ti, Zr, and ZrO2) was performed on 30 µm Havar at the 
University of Alberta’s NanoFab micro and nanofabrication research facility (Edmonton, AB). Film 
thicknesses were verified through profilometer measurements and SEM micrographs.  

To test the Havar impurity reducing properties of the sputtered foils (thicknesses = 250–450 nm), 
test irradiations were performed using 2.8–3.0 mL Barnstead 18MΩ-cm natH2O. Multiple (N = 9–15) 
test irradiations (of 1,000 µAmin and 5,000 µAmin) were performed on all foils at 17.5 MeV using 
the EPC’s TR 19/9 cyclotron to achieve total integrated currents of approximately 20,000–30,000 
µAmin (weighted average currents of 69–81 µA). To ensure consistent irradiation conditions and 
complete sample transfer, both the 13N saturated yield and the recovered natH2O mass were 
measured following all irradiations. Following 13N decay, all water samples were assayed for 
radionuclidic impurities using an HPGe detector (dead time < 5%). Chemical analysis for 
extractable metals was also performed for a subset of the water samples via inductively coupled 
plasma mass spectroscopy (ICP-MS) at the Exova Lab (Edmonton, AB).  

As tantalum was the only film which demonstrated Havar impurity-reducing properties comparable 
to niobium, the foil above was further irradiated to a total integrated current of 80,000 µAmin. Given 
the excellent continued performance noted via radionuclidic contaminant analysis, our next step 
was to install a new Ta-sputtered foil on our main production target for the purpose of testing both 
the [18F]F- reactivity and evaluating the tantalum film’s longevity performance. Prior to installation of 
the Ta-sputtered Havar on our production target, a series of five 1,000 µAmin (65 µA) natH2O test 
irradiations were performed on the existing (previously irradiated to ~980,000 µAmin) 400 nm Nb-
sputtered Havar foil to establish a baseline to which the tantalum results could be compared. A 
new 900 nm Ta-sputtered Havar foil was installed and the produced [18F]F- used for routine 
production of [18F]FDG, [18F]FAZA, and [18F]FLT. Periodically (every 75,000–100,000 μAmin), a 
series of four test irradiations (1 @ 5,000 μAmin followed by 3 @ 1,000 μAmin) were carried out at 
65 μA on natH2O. All test irradiations were assayed for radionuclidic impurities.  
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Results: The following figure summarizes the Havar-associated radionuclidic impurities measured 
for the initial (approx. 20,000–30,000 µAmin) test irradiations, and the Ta-sputtered sputtered foil to 
80,000 µAmin (“Ta (80k)”). With a clear dependence noted on the integrated current, the reported 
values are given as the average and standard deviation of the end-of-bombardment (EOB) 
radioactivity normalized to the integrated current for each irradiation. It is important to note that 
since the radionuclidic impurities showed a marked decrease for the first few irradiations on all new 
foils before reaching a relatively constant value, the first three 1,000 μAmin irradiations were 
omitted when producing the figure below. Evaluation of this figure reveals that tantalum is the only 
film which demonstrates radionuclidic impurity reducing characteristics similar to that of niobium. 
Based on strong correlations observed between the radionuclidic and ICP-MS measurements, we 
have concluded that trends noted in the radionuclidic impurities are reflective of trends in the ionic 
impurities. 

 
Table 1 summarizes the radionuclidic impurities 
(in units of mBq/µAmin at EOB) measured for the 
previously employed Nb-sputtered foil and the 
Ta-sputtered foil used on the production target. 
All values are reported as the average and 
standard deviation of the normalized activities. 
The integrated current (C) is reported as the total 
current on target prior to the test irradiations.   

Table 2 summarizes the [18F]FDG decay-corrected 
(DC) yields and end-of-synthesis (EOS) activities (A) 
obtained on the EPC's GE TracerLab MX synthesis 
unit for all syntheses performed up to the reported 
integrated current. A comparison of the average 
[18F]FDG DC yield (for comparable total integrated 
currents) demonstrates a 6.4 percent improvement (one-tailed t-test, p = 0.0025) with the Ta-
sputtered foil when compared with the previously employed Nb-sputtered foil.  

Conclusions: Compared with our current Nb-sputtered Havar standard, the Ta-sputtered Havar 
demonstrates a significant reduction in the Havar-associated impurities following prolonged use up 
to ~1,000,000 µAmin. In addition to decreased Havar-associated impurities, we have also noted an 
improvement in the [18F]FDG yields and yield consistency. Studies are currently underway to 
further evaluate this Ta-sputtered foil to a total integrated current of ~1,500,000 µAmin. 
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Table 1 Nb Ta Ta
C [µAmin] 979,307 473,696 1,0002,546
Co-55 9748 ± 1621 37 ± 48 721 ± 238
Co-56 2038 ± 237 75 ± 27 171 ± 56  
Co-57 807 ± 98 5 ± 1 13 ± 4 
Co-58 9248 ± 1097 42 ± 6 120 ± 35 
Mn-52 9035 ± 1476 98 ± 41 111 ± 48 
Ni-57 2708 ± 394 18 ± 9 73 ± 18 

Table 2 Nb Ta
C [μAmin] 936,802 922,113
N 38 35 
Mean DC yield [%] 60.9 ± 11.7 67.3 ± 6.1
EOS Aaverage [GBq] 123 ± 26 139 ± 19 
EOS Amax [GBq] 171 184 
EOS Amin [GBq] 64 109 




